
Background Representation Decisions Progress

A Mechanized Proof in Coq of
the Type Soundness of Core L3

Milestone 3

Yawar Raza



Background Representation Decisions Progress

Section 1

Background



Background Representation Decisions Progress

L3and Type Soundness

I Supports strong updates: updating a pointer’s contents to a
value of a different type.

I Trade-off: the language is linear, meaning all variables are
used exactly once.

I The rules in L3’s type system enforce such restrictions that
allow strong updates to be safe.

I We can formally prove that these rules don’t permit
erroneous programs. This property is called type soundness.



Background Representation Decisions Progress

Mechanization

I Proofs about programming languages are traditionally
only worked out by hand.

I Nowadays, PL researchers often also use software tools to
construct proofs. I am using a tool called Coq.

I The software checks that these mechanized proofs are
correct.

I We must translate our proof appropriately so the software
will understand it.

I There are different ways to translate the constructs used in
our proof, some of which are easier to use than others.



Background Representation Decisions Progress

Section 2

Representation Decisions



Background Representation Decisions Progress

Locally Nameless Representation

I In paper proofs, variables can be implicitly renamed to
prevent conflicts.

I Coq can’t do this, so we need to carefully consider how
variables are represented. I used the locally nameless
representation.

I Bound variables use de Bruijn indices: A variable is
represented by a number indicating the relative place that
variable was introduced.

I Checking if two types are equal is easy.
I Free variables use explicit variable names.

I Environments for mapping these variables are simple.



Background Representation Decisions Progress

Environments

I Environments map variables to some other value. I used
several different types of environments.

I I initially represented them using functions: f (x) = v
means x maps to v.

I Problem: No concrete access to the variables it binds.
I Problem: Need to separately specify finiteness.

I Changed to using a list of pairs [(x1, v1), (x2, v2), ...].
I Used an external library called TLC.
I Potential problem: Permuted environment isn’t recognized

as equivalent. Ended up not being an issue.



Background Representation Decisions Progress

Semantic Interpretations

I VJτK: Interpret type τ as a set of configurations (σ, e).
I Initially implemented as relation V(τ, σ, e).
I Then implemented as a function V(τ) that returned a

relation R(σ, e).
I To prove termination, added an extra function parameter:

V(τ, τ ′).
I Then, I needed to change the return type to: R(δ, σ, e).

I δ is an environment for substituting location variables.



Background Representation Decisions Progress

Section 3

Progress



Background Representation Decisions Progress

Progress

I Previous Milestones
I Syntax, operational semantics, static semantics

I This Milestone
I Lots of refactoring; migrated to the TLC library
I Implemented semantic interpretations
I Started type soundness proof cases

I Remaining Work
I Remaining soundness cases
I Requires proving basic properties of previous definitions


	Background
	Representation Decisions
	Progress

