A Mechanized Proof in Coq of the Type Soundness of Core L³ Milestone 2

Yawar Raza

Review

- ► Type Soundness
 - "Is this type system *really* detecting all the type-errors a program can have?"
 - Counterexamples can be hard to find. Let's prove it mathematically instead!
- Mechanization
 - "Is this hand-written proof *really* correct and free of mistakes?"
 - Errors in proves can be hard to find. Let's have the computer check the proof!

Section 1

Representing Relations

Predicates and Relations

- Propositions can be parameterized
 - Unary propositions: predicates. Whether a value has a particular property.
 - ► **snowing**(*c*): it is snowing in city *c*
 - ► **raining**(*c*): it is raining in city *c*
 - N-ary propositions: relations. Whether a value is related in other values in a particular way.
 - ▶ weather(*w*, *c*): the weather is *w* in city *c*
 - ► **typed**(Γ , *e*, τ): expression *e* has type τ in environment Γ Actually written as $\Gamma \vdash e : \tau$

Inference Rules

- A closed set of rules that defines a predicate or relation.
 - $\forall x, l. in(x, cons x l)$
 - $\forall x, y, l. in(x, l) \Rightarrow in(x, cons y l)$
- ► Example: Prove in(3, cons 5 (cons 3 (cons 7 nil)))
 - Second rule: in(3, cons 3 (cons 7 nil)) ⇒ in(3, cons 5 (cons 3 (cons 7 nil)))
 - ► First rule: in(3, cons 3 (cons 7 nil))
- Because the rules are *closed*, we know that:
 - in(x, nil) is never true, no matter what x is.
 - ► in(3, cons 5 *l*) can only be proven by the second rule, so we know in(3, *l*).

- **disjoint_union** (s_1, s_2, s_u) says that s_u is the disjoint union of s_1 and s_2
- Define s[x] := true if $x \in s$, false if $x \notin s$
- ► Simple logical formula: **disjoint_union** $(s_1, s_2, s_u) :=$

$$\forall x. (s_1[x] = \mathsf{true} \land s_2[x] = \mathsf{false} \land s_3[x] = \mathsf{true}) \lor (s_1[x] = \mathsf{false} \land s_2[x] = \mathsf{true} \land s_3[x] = \mathsf{true}) \lor (s_1[x] = \mathsf{false} \land s_2[x] = \mathsf{false} \land s_3[x] = \mathsf{false})$$

- Define helper relation **nand** (b_1, b_2, b_3) :
 - ► nand(true, false, true)
 - nand(false, false, true)
 - nand(false, false, false)
- ► disjoint_union $(s_1, s_2, s_u) := \forall x. \text{ nand}(s_1[x], s_2[x], s_u[x])$

- ► Instead define **disjoint**(s₁, s₂), similarly to last slide's definition.
- ► Then define **disjoint_union** with the single inference rule:
 - disjoint(s_1, s_2) \Rightarrow disjoint_union($s_1, s_2, union(s_1, s_2)$)

- Build up the sets, rather than stating a property about set membership.
 - ► disjoint_union(*empty*, *empty*, *empty*)
 - $\blacktriangleright \forall x, s_1, s_2, s_u.$

 $x \notin s_u \land disjoint_union(s_1, s_2, s_u) \Rightarrow$ disjoint_union($add(x, s_1), s_2, add(x, s_u)$)

 $\blacktriangleright \forall x, s_1, s_2, s_u.$

 $x \notin s_u \land disjoint_union(s_1, s_2, s_u) \Rightarrow$ disjoint_union(s_1, add(x, s_2), add(x, s_u))

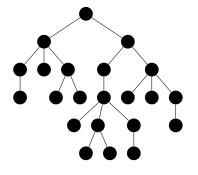
Section 2

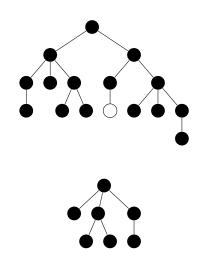
Automation

What Does Automation Do?

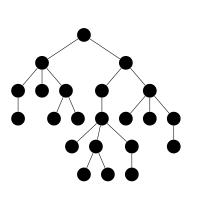
- ► Let's prove in(3, [5, 7, 4, 6, 3, 9]).
 - ▶ Rule 2: $in(3, [7, 4, 6, 3, 9]) \Rightarrow in(3, [5, 7, 4, 6, 3, 9])$
 - Rule 2: $in(3, [4, 6, 3, 9]) \Rightarrow in(3, [7, 4, 6, 3, 9])$
 - Rule 2: $in(3, [6, 3, 9]) \Rightarrow in(3, [4, 6, 3, 9])$
 - Rule 2: $in(3, [3, 9]) \Rightarrow in(3, [6, 3, 9])$
 - ► Rule 1: **in**(3, [3, 9])
- Essentially, we just compared each element to the target in order.
 - We used Rule 2 if there was no match.
 - We used Rule 1 if there was a match.
- ► Sounds easy enough for a computer to do by itself.
- ► Simply put, we run a *search algorithm* to find the steps of the proof.
 - But search algorithms can infinite loop sometimes...

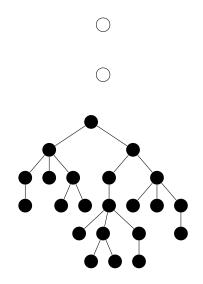
What I'm Searching For





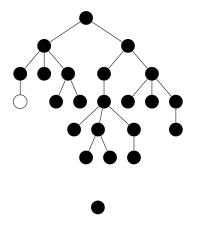
Top to Bottom

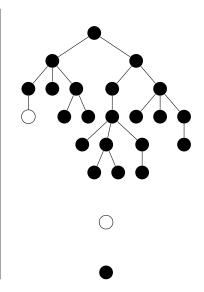




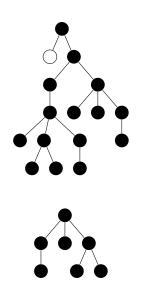
Automation

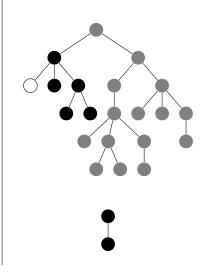
Bottom to Top





Top to Bottom, Skipping the Root





Milestones

- ► Complete
 - Mechanized the syntax, the operational semantics, and the type system.
- Milestone 3
 - Refactoring representations.
 - Mechanizing the semantic interpretations.
 - Working on the simple cases of the proof.
 - Figuring out what lemmas are needed for implementing the proof.