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Review

I Type Soundness
I “Is this type system really detecting all the type-errors a

program can have?”
I Counterexamples can be hard to find. Let’s prove it

mathematically instead!
I Mechanization

I “Is this hand-written proof really correct and free of
mistakes?”

I Errors in proves can be hard to find. Let’s have the
computer check the proof!
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Section 1

Representing Relations
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Predicates and Relations

I Propositions can be parameterized
I Unary propositions: predicates. Whether a value has a

particular property.
I snowing(c): it is snowing in city c
I raining(c): it is raining in city c

I N-ary propositions: relations. Whether a value is related in
other values in a particular way.

I weather(w, c): the weather is w in city c
I typed(Γ, e, τ): expression e has type τ in environment Γ

Actually written as Γ ` e : τ
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Inference Rules

I A closed set of rules that defines a predicate or relation.
I ∀x, l. in(x, cons x l)
I ∀x, y, l. in(x, l) ⇒ in(x, cons y l)

I Example: Prove in(3, cons 5 (cons 3 (cons 7 nil)))
I Second rule:

in(3, cons 3 (cons 7 nil)) ⇒ in(3, cons 5 (cons 3 (cons 7 nil)))
I First rule: in(3, cons 3 (cons 7 nil))

I Because the rules are closed, we know that:
I in(x,nil) is never true, no matter what x is.
I in(3, cons 5 l) can only be proven by the second rule, so we

know in(3, l).
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Disjoint Union: Definition 1

I disjoint union(s1, s2, su) says that su is the disjoint union of
s1 and s2

I Define s[x] := true if x ∈ s, false if x /∈ s
I Simple logical formula: disjoint union(s1, s2, su) :=

∀x. (s1[x] = true ∧ s2[x] = false ∧ s3[x] = true)∨
(s1[x] = false ∧ s2[x] = true ∧ s3[x] = true)∨
(s1[x] = false ∧ s2[x] = false ∧ s3[x] = false)
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Disjoint Union: Definition 2

I Define helper relation nand(b1, b2, b3):
I nand(true, false, true)
I nand(false, false, true)
I nand(false, false, false)

I disjoint union(s1, s2, su) := ∀x. nand(s1[x], s2[x], su[x])



Representing Relations Automation Milestones

Disjoint Union: Definition 3

I Instead define disjoint(s1, s2), similarly to last slide’s
definition.

I Then define disjoint union with the single inference rule:
I disjoint(s1, s2) ⇒ disjoint union(s1, s2,union(s1, s2))
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Disjoint Union: Definition 4

I Build up the sets, rather than stating a property about set
membership.

I disjoint union(empty, empty, empty)
I ∀x, s1, s2, su.

x /∈ su ∧ disjoint union(s1, s2, su) ⇒
disjoint union(add(x, s1), s2, add(x, su))

I ∀x, s1, s2, su.
x /∈ su ∧ disjoint union(s1, s2, su) ⇒
disjoint union(s1, add(x, s2), add(x, su))
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Section 2

Automation
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What Does Automation Do?

I Let’s prove in(3, [5, 7, 4, 6, 3, 9]).
I Rule 2: in(3, [7, 4, 6, 3, 9]) ⇒ in(3, [5, 7, 4, 6, 3, 9])
I Rule 2: in(3, [4, 6, 3, 9]) ⇒ in(3, [7, 4, 6, 3, 9])
I Rule 2: in(3, [6, 3, 9]) ⇒ in(3, [4, 6, 3, 9])
I Rule 2: in(3, [3, 9]) ⇒ in(3, [6, 3, 9])
I Rule 1: in(3, [3, 9])

I Essentially, we just compared each element to the target in
order.

I We used Rule 2 if there was no match.
I We used Rule 1 if there was a match.

I Sounds easy enough for a computer to do by itself.
I Simply put, we run a search algorithm to find the steps of

the proof.
I But search algorithms can infinite loop sometimes...
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What I’m Searching For
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Top to Bottom
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Bottom to Top
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Top to Bottom, Skipping the Root
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Milestones

I Complete
I Mechanized the syntax, the operational semantics, and the

type system.
I Milestone 3

I Refactoring representations.
I Mechanizing the semantic interpretations.
I Working on the simple cases of the proof.
I Figuring out what lemmas are needed for implementing

the proof.
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