
Representing Relations Automation Milestones

A Mechanized Proof in Coq of
the Type Soundness of Core L3

Milestone 2

Yawar Raza



Representing Relations Automation Milestones

Review

I Type Soundness
I “Is this type system really detecting all the type-errors a

program can have?”
I Counterexamples can be hard to find. Let’s prove it

mathematically instead!
I Mechanization

I “Is this hand-written proof really correct and free of
mistakes?”

I Errors in proves can be hard to find. Let’s have the
computer check the proof!



Representing Relations Automation Milestones

Section 1

Representing Relations



Representing Relations Automation Milestones

Predicates and Relations

I Propositions can be parameterized
I Unary propositions: predicates. Whether a value has a

particular property.
I snowing(c): it is snowing in city c
I raining(c): it is raining in city c

I N-ary propositions: relations. Whether a value is related in
other values in a particular way.

I weather(w, c): the weather is w in city c
I typed(Γ, e, τ): expression e has type τ in environment Γ

Actually written as Γ ` e : τ



Representing Relations Automation Milestones

Inference Rules

I A closed set of rules that defines a predicate or relation.
I ∀x, l. in(x, cons x l)
I ∀x, y, l. in(x, l) ⇒ in(x, cons y l)

I Example: Prove in(3, cons 5 (cons 3 (cons 7 nil)))
I Second rule:

in(3, cons 3 (cons 7 nil)) ⇒ in(3, cons 5 (cons 3 (cons 7 nil)))
I First rule: in(3, cons 3 (cons 7 nil))

I Because the rules are closed, we know that:
I in(x,nil) is never true, no matter what x is.
I in(3, cons 5 l) can only be proven by the second rule, so we

know in(3, l).



Representing Relations Automation Milestones

Disjoint Union: Definition 1

I disjoint union(s1, s2, su) says that su is the disjoint union of
s1 and s2

I Define s[x] := true if x ∈ s, false if x /∈ s
I Simple logical formula: disjoint union(s1, s2, su) :=

∀x. (s1[x] = true ∧ s2[x] = false ∧ s3[x] = true)∨
(s1[x] = false ∧ s2[x] = true ∧ s3[x] = true)∨
(s1[x] = false ∧ s2[x] = false ∧ s3[x] = false)



Representing Relations Automation Milestones

Disjoint Union: Definition 2

I Define helper relation nand(b1, b2, b3):
I nand(true, false, true)
I nand(false, false, true)
I nand(false, false, false)

I disjoint union(s1, s2, su) := ∀x. nand(s1[x], s2[x], su[x])



Representing Relations Automation Milestones

Disjoint Union: Definition 3

I Instead define disjoint(s1, s2), similarly to last slide’s
definition.

I Then define disjoint union with the single inference rule:
I disjoint(s1, s2) ⇒ disjoint union(s1, s2,union(s1, s2))



Representing Relations Automation Milestones

Disjoint Union: Definition 4

I Build up the sets, rather than stating a property about set
membership.

I disjoint union(empty, empty, empty)
I ∀x, s1, s2, su.

x /∈ su ∧ disjoint union(s1, s2, su) ⇒
disjoint union(add(x, s1), s2, add(x, su))

I ∀x, s1, s2, su.
x /∈ su ∧ disjoint union(s1, s2, su) ⇒
disjoint union(s1, add(x, s2), add(x, su))



Representing Relations Automation Milestones

Section 2

Automation



Representing Relations Automation Milestones

What Does Automation Do?

I Let’s prove in(3, [5, 7, 4, 6, 3, 9]).
I Rule 2: in(3, [7, 4, 6, 3, 9]) ⇒ in(3, [5, 7, 4, 6, 3, 9])
I Rule 2: in(3, [4, 6, 3, 9]) ⇒ in(3, [7, 4, 6, 3, 9])
I Rule 2: in(3, [6, 3, 9]) ⇒ in(3, [4, 6, 3, 9])
I Rule 2: in(3, [3, 9]) ⇒ in(3, [6, 3, 9])
I Rule 1: in(3, [3, 9])

I Essentially, we just compared each element to the target in
order.

I We used Rule 2 if there was no match.
I We used Rule 1 if there was a match.

I Sounds easy enough for a computer to do by itself.
I Simply put, we run a search algorithm to find the steps of

the proof.
I But search algorithms can infinite loop sometimes...



Representing Relations Automation Milestones

What I’m Searching For



Representing Relations Automation Milestones

Top to Bottom



Representing Relations Automation Milestones

Bottom to Top



Representing Relations Automation Milestones

Top to Bottom, Skipping the Root



Representing Relations Automation Milestones

Milestones

I Complete
I Mechanized the syntax, the operational semantics, and the

type system.
I Milestone 3

I Refactoring representations.
I Mechanizing the semantic interpretations.
I Working on the simple cases of the proof.
I Figuring out what lemmas are needed for implementing

the proof.


	Representing Relations
	Automation
	Milestones

