A Mechanized Proof in Coq of the Type Soundness of Core L^3 Milestone 2

Yawar Raza

Review

- Type Soundness
	- If "Is this type system *really* detecting all the type-errors a program can have?"
	- \triangleright Counterexamples can be hard to find. Let's prove it mathematically instead!
- \blacktriangleright Mechanization
	- ► "Is this hand-written proof *really* correct and free of mistakes?"
	- \triangleright Errors in proves can be hard to find. Let's have the computer check the proof!

Section 1

[Representing Relations](#page-2-0)

Predicates and Relations

- \triangleright Propositions can be parameterized
	- \triangleright Unary propositions: predicates. Whether a value has a particular property.
		- \triangleright **snowing**(*c*): it is snowing in city *c*
		- \triangleright **raining**(*c*): it is raining in city *c*
	- \triangleright N-ary propositions: relations. Whether a value is related in other values in a particular way.
		- \triangleright **weather**(*w*, *c*): the weather is *w* in city *c*
		- **typed**(Γ , e , τ): expression *e* has type τ in environment Γ Actually written as $\Gamma \vdash e : \tau$

Inference Rules

- \triangleright A closed set of rules that defines a predicate or relation.
	- $\blacktriangleright \forall x, l$. **in**(*x*, cons *x l*)
	- $\rightarrow \forall x, y, l$. **in**(*x*, *l*) ⇒ **in**(*x*, cons *y l*)
- Example: Prove $in(3, cons 5 (cons 3 (cons 7 nil)))$
	- \blacktriangleright Second rule:

 $in(3, cons 3 (cons 7 nil)) \Rightarrow in(3, cons 5 (cons 3 (cons 7 nil)))$

- First rule: $in(3, cons 3 (cons 7 nil))$
- ▶ Because the rules are *closed*, we know that:
	- \triangleright **in**(*x*, nil) is never true, no matter what *x* is.
	- \triangleright **in**(3, cons 5 *l*) can only be proven by the second rule, so we know **in**(3, *l*).

- \triangleright **disjoint_union**(s_1, s_2, s_u) says that s_u is the disjoint union of *s*¹ and *s*²
- \triangleright Define *s*[*x*] := true if *x* ∈ *s*, false if *x* ∉ *s*
- \triangleright Simple logical formula: **disjoint_union**(s_1, s_2, s_u) :=

$$
\forall x. (s_1[x] = \text{true} \land s_2[x] = \text{false} \land s_3[x] = \text{true}) \lor (s_1[x] = \text{false} \land s_2[x] = \text{true} \land s_3[x] = \text{true}) \lor (s_1[x] = \text{false} \land s_2[x] = \text{false} \land s_3[x] = \text{false})
$$

- \blacktriangleright Define helper relation **nand**(b_1 , b_2 , b_3):
	- \blacktriangleright **nand**(true, false, true)
	- **P** nand(false, false, true)
	- **nand**(false, false, false)
- ▶ disjoint_union $(s_1, s_2, s_u) := \forall x$. nand $(s_1[x], s_2[x], s_u[x])$

- Instead define **disjoint** (s_1, s_2) , similarly to last slide's definition.
- If Then define **disjoint union** with the single inference rule:
	- \triangleright **disjoint**(*s*₁, *s*₂) ⇒ **disjoint_union**(*s*₁, *s*₂, *union*(*s*₁, *s*₂))

- \triangleright Build up the sets, rather than stating a property about set membership.
	- ^I **disjoint union**(*empty*,*empty*,*empty*)
	- \triangleright $\forall x, s_1, s_2, s_u$.

 $x \notin s_u \wedge$ **disjoint_union** $(s_1, s_2, s_u) \Rightarrow$ **disioint_union**($add(x, s_1), s_2, add(x, s_u)$)

 \triangleright $\forall x, s_1, s_2, s_u$.

 $x \notin s_u \wedge$ **disjoint_union** $(s_1, s_2, s_u) \Rightarrow$ **disjoint_union**(s_1 , *add*(x , s_2), *add*(x , s_u))

Section 2

[Automation](#page-9-0)

What Does Automation Do?

- Eet's prove $in(3, [5, 7, 4, 6, 3, 9])$.
	- \blacktriangleright Rule 2: **in**(3, [7, 4, 6, 3, 9]) \Rightarrow **in**(3, [5, 7, 4, 6, 3, 9])
	- \blacktriangleright Rule 2: **in**(3, [4, 6, 3, 9]) \Rightarrow **in**(3, [7, 4, 6, 3, 9])
	- \blacktriangleright Rule 2: **in**(3, [6, 3, 9]) \Rightarrow **in**(3, [4, 6, 3, 9])
	- \blacktriangleright Rule 2: **in**(3, [3, 9]) \Rightarrow **in**(3, [6, 3, 9])
	- Rule 1: $in(3, 3, 9]$
- \triangleright Essentially, we just compared each element to the target in order.
	- \triangleright We used Rule 2 if there was no match.
	- \triangleright We used Rule 1 if there was a match.
- \triangleright Sounds easy enough for a computer to do by itself.
- ► Simply put, we run a *search algorithm* to find the steps of the proof.
	- \triangleright But search algorithms can infinite loop sometimes...

What I'm Searching For

Top to Bottom

Bottom to Top

Top to Bottom, Skipping the Root

Milestones

- \triangleright Complete
	- \blacktriangleright Mechanized the syntax, the operational semantics, and the type system.
- \blacktriangleright Milestone 3
	- \blacktriangleright Refactoring representations.
	- \blacktriangleright Mechanizing the semantic interpretations.
	- \triangleright Working on the simple cases of the proof.
	- \blacktriangleright Figuring out what lemmas are needed for implementing the proof.